
Field Guide

15+ Months of Client Operations

Connect to databases, analyze and visualize
with natural language to SQL

Live App: app.tigzig.com

Deploying AI on Databases

1. Lessons

2. Live Apps (4 Variants – 8 Apps)

3. Source Code

DATS-4: Database AI Suite – Version 4

GPT-5: Initial Assessment & Live Integration

10th August 2025

app.tigzig.com

Deployments
1. Build by Practitioner. Built for Business: The DATS-4 suite is

built by a data scientist for internal teams. The design

prioritizes analytical agility and rapid deployment in secure

SMB environments. This involves different trade-offs than the
standards for large-scale enterprise software.

2. Live History: The first client deployment was in April 2024.
There are currently 9 live, customized versions running across

3 SMB clients.

3. Implementation Variants: Client projects vary based on need-

specific components only, custom GPTs connected to

databases, rapid-deploy version & customizations.

4. The Public App (app.tigzig.com): Fully functional version of

the suite. It has been configured as a minimal security
sandbox to allow for unrestricted testing of the core features.

5. Live Project Checklist: ALL client projects include a
mandatory checklist: security layers, semantic model, fixed

database connections, and disabling of admin features for

end users

DATS-4 Evolution
Database AI Suite – Version 4

OSS
Release

Name Additional Features

V1 Jun ’24 Analytics
Assistant
App

▪ Flowise UI + FastAPI for Text-to-SQL
▪ MySQL support
▪ Python charts & stats
▪ ChatGPT connected to Databases

V2 Nov’24 REX-2 ▪ React UI
▪ Flowise chatflow backend
▪ Postgres support
▪ Interactive grid
▪ Direct file upload to DB
▪ PDF reports
▪ Quick analysis options
▪ OAuth

V3 Feb’25 REX-3 ▪ Multi-step reasoning based analysis
▪ Choice of multiple LLM
▪ Flowise sequential agent backend
▪ Agent reasoning view
▪ Quick try sample functionality
▪ Logs

V4 Aug’25 DATS -4 ▪ Flowise new multi agent backend
▪ Updated LLM Choices w/ GPT-5
▪ Database table export & CSV Download
▪ Export to PDF (Text only)
▪ Updated UI
▪ Portfolio analyst integration

Field Report: GPT-5 First Look
From my experience, new model releases often have
higher, volatile latencies and costs in the first days or

weeks, then stabilize over time.

My preliminary assessment of GPT-5 first few days of release as
of 10th Aug 2025:

1. Reasoning & Analysis: close to Claude Sonnet 4

2. Latencies: higher - temporary phenomenon

3. Costs: higher than expected. Likely temporary. On watch.

4. Variance: Given the amount of variance I am seeing with GPT-
5, cost estimates would not be reliable. I am holding off on
sharing exact cost estimates for GPT-5 for the time being. But
based on published rates, I expect them to stabilize around
GPT-4.1 levels

5. Integration: At the same time, I have incorporated GPT-5 as
an LLM Choice options in the public DATS-4 for users to try
out and compare results

6. Detailed cost comparisons and model choices are covered in
the LLM section later in this guide

I typically migrate clients only once I am confident that
the model performance, cost and latencies have

stabilized.

1. Lessons
1. Security

2. Datamart & Context

3. Agent Setups

4. LLM Choices

5. LLM Cost

6. Usage Patterns

7. Platforms

Security
1. Align with rules – set by DB and server admins. They are

troublesome but will save your bacon one day.

2. No end user touches the raw tables– even with SELECT access

3. Separate user ID’s at DB level with fine grained permissions

4. Row Level Security – use with Postgres

5. Separate : schemas / database / views for say Finance vs.
Marketing. The additional maintenance effort is worth it.

6. Authentication: OAuth / API Keys

7. Log all API calls : push to a DB / 3rd party tools

8. IP / Domain Whitelist : FastAPI / DBs / Agents / all end-points

9. CORS : for all FastAPI, with domain whitelist

10.Resource Limits for CPU & Memory – implement on server

11.Rate Limits: at FastAPI (with SlowAPI) and Agent end

12.Server: Firewalls, only SSH, Fail2Ban, IP Whitelists etc.

13.VPNs: default deployment always on a client VPN.

Security is expensive – direct cost, bandwidth and business

opportunity loss. Every layer adds cost and user friction. Assess

risk of breach for each data item, worse cases and potential

impact. Apply layers accordingly. Everything is not catastrophic.

Building the Foundation
 Datamarts and AI Context

Datamarts
Creating usable datamarts is one of the most time consuming

things, especially the data cleaning and validating against
reported numbers.

1. Need to know: create custom datamarts and views for
specific use cases. Operate on need to know basis.

2. Auto Refresh: setup auto refresh of datamarts

3. Validation reports: validation reports for all datamart

refreshes is mandatory

4. Be alert: After running for months, a validation can suddenly

fail out of the blue. You must be ready to catch it.

Context
Use system prompt to provide context to AI

1. Sample rows

2. Univariates for numerics & distributions for categoricals

3. Business rules and business context

4. Golden queries – sample queries for common requests,

particularly for the more complex queries

5. Output formats / row limits / data gotchas

Agent Setup
Agent backend on Flowise AI, with conditional routing
based on type of request. A multi-sequential agent setup

Conditional routing agent will route to advanced analyst
or general analyst based on a set of guidelines or if

specifically instructed by user

Agent Setup

1. The Dispatcher (Conditional Router Agent)

This is the gatekeeper. Its only job is to analyze the user's request

and route it to correct specialist agent based on a set of rules.

2. The Workhorse (General Analyst Agent)

This is GPT-4.1 mini - optimized for execution speed. It handles

the majority of requests: direct SQL queries, data pulls, and

standard charts. It does not perform multi-step reasoning. It

directly executes, validates, and returns the result.

3. The Specialist (Advanced Analyst)

This is a two-step routing, used only for complex requests that

require reasoning.

A. The Planner: First, a reasoning-focused LLM (choice of

LLMs) creates a step-by-step analysis plan, including the exact

SQL and python code required.

B. The Executor Agent: This is GPT-4.1 in all cases - reviews

and executes that plan, performing final error checks and

formatting the output.

The Executor agent will be upgraded to GPT-5 series once
its cost and latency have stabilized

Equipping the Agents: Core Tools

1. Database Connect

▪ Custom FastAPI Server
▪ Allows agent to connect to database to

execute SQL queries

2. e2b Code Interpreter

▪ Flowise built-in tool
▪ Python sandbox
▪ To create charts and run statistical analysis

3. Markdown to PDF

▪ MCP Server
▪ To create PDF (text only) output. The agent

sends markdown to the MCP Server, which
returns a PDF file path.

The core DATS-4 agent uses three primary tools:

The system is modular, allowing other tools to be
plugged in as needed: web scrapers, Excel

updaters, report emailers, file converters, custom
automations and more.

Agent Orchestration

1. No 100% : You will never get 100% what you instruct 100% of

the time. Test and determine what variance you can live with.

2. Edge cases: test edge cases and outliers. Calibrate instruction

till you get your desired outcome

3. Break it : Push it to limits. See where it trips and falls.

4. Reasoning required ? – if so , specify . Not always required.

5. Number of Queries – CRITICAL to specify a cap on number of

SQL queries an agent can run for a single question.

6. CREATE / ALTER/ DROP : specify if they are allowed or not

7. Temporary tables : specify if permitted and how (CREATE

TEMP or CREATE TABLE) , and cleanup protocols

8. Limit clause: how many rows ? When to use ? When not?

9. Division by zero: common error – COALESCE(), NULLIF() etc

10. Debug : debugging protocol for query failures

11. Reminders help – remind to check for common issues –

missing table, table exists, joins, data type mismatches etc

To get an agent to deliver the right outcome, you
have to test and calibrate- sometimes 100s of times.

It's the only way. The are the rules I follow

Agent Backend

Don’t reinvent the wheel.

1. Don’t reinvent the wheel: use tools like Flowise/
n8n as first choice- they take care of many nuances

out-of-box. Connect user interface via API calls.

2. Flowise AI: is my first choice. Robust out-of-box

memory and state management and numerous
other features. Great for complex agent workflow,
especially for sequential flows.

3. n8n – for app integrations and where Flowise not
the best fit.

4. Hard-coded agents: used only for functionality that
framework tools can't support.

LLM Choices
For end-user applications, use frontline providers (OpenAI,

Google, Anthropic). They offer the best combination of

reliability, consistency, quality and pricing. For internal

analytics work – practitioners should test and use other

models per their own judgment.

My Top Recommendations

1. SQL Executions: GPT-4.1 (GPT-5 once stable) for complex

and 4.1-mini (GPT-5-mini once stable) for rest. GPT-4o-

mini is excellent for simpler and repetitive requests.

2. Tool use: for all tool use functions, OpenAI’s GPT models -

effective, reliable and cost efficient

3. Non-Tool LLM use: Gemini Flash 2.0/ 2.5 as first choice for

non tool tasks - e.g. automations, schema detection,

reasoning, planning

4. Complex: Claude Sonnet 4 for the hardest and most

complex tasks

5. Other LLMs: DATS-4 provides LLM choices including

DeepSeek, Qwen & GLM. Great quality and pricing. But I

see a lot of variance in billed cost and latencies. DATS-4

allows for easy integration of other LLMs

LLM Costs: Guidelines
▪ Use Case: Always estimate for your specific use case. Check

actual charged API costs. Don’t rely on published rate.

▪ Lowest Cost: GPT-4o mini and Gemini Flash 2.0 are older
model, but robust, lowest cost and great for many tasks.
Test them first

▪ Value: GPT-4.1-mini (GPT-5-mini once stable) and Gemini
Flash 2.5 - great workhorses at reasonable cost.

▪ GPT-4.1 for harder tasks especially complex SQL executions
(GPT-5 once stable)

▪ Claude Sonnet 4.0 is an all rounder and the best, but
expensive. Keep for most complex reasoning.

▪ DeepSeek. Qwen, GLM and others – High latency and cost
variance based on provider. DeepSeek more stable now.

▪ Single step agents for direct questions = low cost.

▪ Multi-step agents = exponential cost increase. Use with
care. See next sections

▪ Number of SQL queries an agent is allowed has direct cost
impact. 2 queries per question vs. 10 queries= 5x cost

▪ Context – piles up with same session adding to cost. New
question = open new session

Cost estimates as of 10th August 2025. Verify current rates
before budgeting.

LLM Costs: 1 Question 1 Query

LLM ~USD Remarks

GPT-5 Volatile New release - high variance. Expect to
stabilize around GPT 4.1 levels

GPT-4.1 2.0 Best for complex SQLs

GPT-4.1-mini 0.50 Great for med. complexity SQL

GPT-4o- mini 0.25 Great for simple/ med. complex

Cost Per 100 Simple Questions

1 Question = 1 SQL Queries/ Tool Call

Single step: no reasoning step, direct execution

Example of single question
1. Share sample rows
2. Add new columns as per instructions
3. Join Table A & B by cust_id
4. Summarize by housing and show counts
5. Share chart for housing summary

▪ Actual vary by use case and the agent setup. Always estimate
for your use cases and compare vs. actuals.

▪ For all estimates – keep in mind that as context increases the
cost goes higher

~USD per 100 Q

Cost estimates as of 10th August 2025. Verify current rates before budgeting.

LLM Costs : Advanced Analysis

~USD per 100 Q

Reasoning Model Quality
Score

Logic
USD

Exec.
USD

Total
USD

Remarks

Gemini Flash 2.0 75 0.25 12.5 12.75 Best value

Gemini Flash 2.5 75 1.75 12.5 14.25 Next after Flash 2.0

Gemini Pro 2.5 85 8.50 12.5 21.00 Avoid. V.High.Cost

Claude Sonnet 4 100 6.50 12.5 19.00 Topmost Quality

DeepSeek R1 90 2.25 12.5 14.75 Great Value

Qwen 3 75 3.50 12.5 13.25 High variances

GLM 4.5 80 1.00 12.5 13.50 High variances

o4-Mini 75 2.75 12.5 15.25 Avoid.

GPT-4.1 90 3.00 12.5 15.50 Great Value

GPT-5 95 Volatile Top Quality

Example of one Advanced Analysis Question (shortened)

1. Create Weighted Average score based on available variables

2. Modelling Data Mart : Take transaction table, summarize
based on cust_id and create derived variables. Summarize and
merge with customer data to create a modelling data mart

▪ In multi-step reasoning-based analysis, execution cost is biggest
chunk due to multiple tool calls.

▪ 1 Question = 7-10 SQL Queries / Tool Calls.

▪ All executions by GPT-4.1. GPT-5 costs, once stable, likely to be
around same levels.

▪ Time: ~2-3 mins per que. Can go upto 10m. Varies by question.

Cost estimates as of 10th August 2025. Verify current rates before budgeting.

Advanced Analysis: Costs Vs. Quality Matrix
Claude Sonnet-4 and GPT-5 are top-tier models for

advanced reasoning.

▪ Estimates based on live deployments & 250+ test runs

▪ Quality scores are a judgment-based assessment of the model's
analytical reasoning depth

▪ Estimates vary – always estimate and check actuals for your use cases

*** GPT-5 is plotted at its projected stabilized cost (equal to GPT-4.1) for
quality comparison only. Current costs are volatile and are not plotted..

Cost estimates as of 10th August 2025. Verify current rates before budgeting.

Warning: The Cost Multipliers of
Multi-Step Agents

1. No. of Steps:
2 Step = double the context = 2X the cost

2. Number of tool calls

Determined by # of SQL Queries allowed

Simple Question = 1 SQL Query
Analysis Question = 2 to 10+ SQL Queries

=10X cost

3. Execution Model

Needs stronger model GPT 4.1 vs 4.1 mini = 5X

4. Additional LLM Cost for reasoning-
~ 7 cents per question for Sonnet 4

5. Context is a Multiplier, not an addition: larger semantic

models, context, and system instructions don't just add to

the cost; they multiply it with every step

6. Debugging
In case of SQL query error - LLM will auto debug and re-run,

taking up additional tool calls and costs.

For multi-step analysis, costs don't just go up; they
escalate exponentially - from 10X to 50X or more. This is

a critical budget risk. Key factors:

Usage Patterns
The highest adoption I see is from operations, marketing,
and finance teams. The following are the most common

usage patterns from my client deployments

Operations, Marketing & Finance Teams

Natural language interface to backend datasets and uploaded
CSV files

1. Pull specific customer and transactions records for review

2. Recon between finance and ops data

3. Insert / Update / Delete records

4. Download filtered data for offline analysis in Excel

5. Append fields and field cleanups

6. Generate summary reports with standard prompts for reuse

7. Generate PDF output

Many users prefer AI interface over their existing interfaces
given the range of operations they can carry out and the
efficiency of direct integration with automations

Analytics Folks

1. Pre-process raw tables and then download for offline analysis

2. Adhoc queries

3. Database level tasks requiring SQL

Platforms

1. Servers: Very often client determined. But where you

have a choice, here are my defaults

Server based: Hetzner + Coolify for deployments. Allows a

firewalled environment to deploy any apps and databases.

Reliable performance and pricing.

Serverless : Vercel for React & Render/ Railway for FastAPI

2. Databases

- Neon: instant Postgres DB creation, deletion etc via API

 Top choice for AI apps requiring instant temp. databases

- Aiven: great free tier.

- Supabase: integrations esp. auth.

- Standard / Self-Hosted: AWS RDS or Hetzner with Coolify

3. SQLite solid option for in-browser work. Requires setting

up SQL Agent from the grounds up.

4. LLM Gateway: OpenRouter provides a single point

gateway to all major LLM including the latest e.g GLM 4.5.

Also, great set of reports to monitor costs.

5. Custom User Interfaces: React / NextJS / HTML-JS

6. Backend Services: FastAPI

2. Live Apps

DATS-4 : Deployed Live

app.tigzig.com

Path: Database AI & SQL Apps

app.tigzig.com

4 Variants – 8 Live Apps
All apps live, fully functional and open source.

DATS-4 is the flagship app.

DATS-4: How to Use

Option 1 : Customize & Deploy

Option 2: Try Live on app.tigzig.com

1. Customize & Deploy

Open Source
Customize & deploy on your server/ VPNs

Key Customization Areas

▪ Security

o User API Keys / Oauth

o Parameterized queries

o DB user ID with restricted privileges

o Row Level Security w/Postgres

▪ Context : Schemas, rows, queries, business rules

▪ Interface : customize based on user needs

▪ Components: deploy full suite or components

▪ Functionality : integrate additional functionalities

Core Deployment Patterns:
1. Full Suite: DATS-4 with custom UI.

2. Custom GPT: connected to the database backend.
3. Rapid UI: Flowise Agent UI for quick deployment.

2. Try live on app.tigzig.com

The public site is a minimal-security sandbox
configured to provide an unrestricted environment for

testing the suite's full range of capabilities.

WARNING: All database credentials and queries submitted via

the public app are logged on the backend. Use this sandbox

with non-sensitive data and credentials only.

ADMIN-LEVEL ACCESS: The full DATS-4 suite is an admin-level

tool with extensive logging. For end-user deployment, you

must restrict functionality and customize logging

configurations.

▪ Use on-the-fly temporary Postgres database
generated by the app or create one instantly at

Supabase/ Neon/ Aiven

▪ Use the sample files on the app / google drive

Practitioner’s Warning

Interface Components

▪ 2 Agents : Main Database Analyst and Quants Analyst

▪ Sample data for rapid testing

▪ Menu option to upload files and connect to databases

▪ On-the-fly temporary Postgres database

▪ Choice of LLM for advanced analysis

▪ Chart & Document pane

▪ Logs

▪ File uploads: interactive grid and automated data
quality metrics

Choice of LLM for Advanced Analysis
Choose your LLM for the reasoning step. The app
setup also allows an efficient method to add and

remove LLMs

Core Workflows

1. Sample File Test
Use the built-in sample data and an on-the-
fly temporary database for rapid evaluation

2. File Upload
Upload a local file (CSV/Tab Delimited) to a
temporary or user-provided database.

3. Direct Connection
Connect directly to a remote Postgres or
MySQL database

1. Sample File – Rapid Test

2.

3.

4. Copy and paste ready to use starter prompt for
quick analysis once database is setup. Or go with

your own request.

Use on-the-fly
temporary

Postgres
database OR
connect to your

own DB.

1.

2. Upload Your File

1.

2.

4. File schema sent to AI automatically. Go to
Advanced Analyst tab and ask questions, analyze,

create and customize charts – in natural language

Use an instant
temporary

Postgres DB OR
connect to your
DB

Select your file for
upload. Supports

CSV and tab
delimited

3.

3. Connect your Database

1.

3. ▪ Go to Advanced Analyst tab

▪ The AI agent does not automatically know
your database schema upon connection. You
must instruct it to list tables or query sample

rows to provide it with the necessary context
for analysis.

▪ Query, Analyze, Merge, Summarize, Visualize

Menu -> Connect to
DB

Postgres and MySQL supported

2.
Paste your DB
credentials. Format

does not matter –
URI / table / text – AI
will parse it

Agent Reasoning View

Full trace of agent’s reasoning process from
business context and feature engineering to the

final SQL queries and degug logs

Dedicated Charts & Docs Panel

▪ Single-click toggle to
open/close charts &

document panel

▪ Dedicated, full-screen

chart panel for
visualizations.

▪ Dynamic document

panel for live report

and data updates.

Python Charts

Integrated Python Interpreter for charting. All
charts below were generated directly in the app.

Statistical Analysis

The integrated Python Interpreter enables full statistical
analysis, not just charting.

PDF Output
▪ On-demand, formatted PDF report generation for all

analysis and query outputs (text only)

▪ Report structure and content are fully customizable via
natural language instructions.

Detailed Logs
▪ Detailed logging of key API calls and actions

▪ Valuable for first line of debugging

Full logs are ‘admin’ level with sensitive info being
logged. Restrict as per security access. For end users,

remove / customize logging as per requirement

Export Tables

▪ Perform transformations and create new tables, then
export any table to a local file (CSV or Pipe

Delimited).

▪ Full support for both MySQL and Postgres

environments.

Interactive Data Table & DQ Report

▪ Interactive data grid for all
uploaded files.

▪ On-the-fly descriptive statistics

and data quality assessment.

▪ Record-level view with filtering

and sorting capabilities.

SSO with OAuth

▪ OAuth-based single
sign-on (SSO) via
Auth0 for - Google,
LinkedIn, Microsoft,
GitHub and Amazon.

▪ Current Scope: The
baseline
implementation is
linked to ‘Create DB’
function only. This
provides unrestricted
testing of analysis
tools without forcing
an app level login

This baseline setup is built for extension. It provides
the OAuth foundation needed for full app

authentication, fine-grained access controls, and row-
level security in a live client project.

App Variants

1. Custom GPT
▪ Custom GPT connected to databases is a robust, effective

solution - straightforward setup and low maintenance
▪ Combines a front-end UI, built-in AI Agent, and the full

native ChatGPT feature set
▪ No separate API Cost for Agent + GPT-5 access

▪ Efficient to connect automation backends and other apps
via FastAPI/ n8n / Flowise / Make.com

▪ This is my first choice

2. Flowise / n8n

▪ Built-in user interfaces from Flowise and n8n.

▪ Setup is efficient with direct connection to automation
backends and other apps

▪ API Charges - as per usage

3. Database AI Suite -4

▪ Top choice where full feature and customization needed
▪ Fully customisable : user interface as well as backend

▪ Deploy anywhere, connect to Oauth

▪ API Charges - as per usage

There are three stable variants of the app, each
suitable for a different use case . The fourth, Voice AI,

is experimental.

3. Source Code

Source Code

• Hit Docs on the

app page

▪ Links to source

codes and

build guide,

including

video guides

All source codes links on app page in docs section

Architecture
Modular architecture for efficient integration of

automation services or backend

Components Based Architecture

GitHub Repos Description

Main App The main application with the UI

FastAPI: Database Connector Handles Text-to-SQL processing, including
file uploads

FastAPI: Neon DB Creation Temporary database creation with Neon

Flowise Agent Schemas Sequential Agent Framework with LLM
Agent built with Flowise AI

Proxy Server For API Calls to OpenAI / Gemini /
Openrouter

MCP Server - Markdown to
PDF

For converting markdown to PDF

Quant Agent Backend Repos The TIGZIG Quants Agent app integrated
into a single tab

▪ Mix and match deployment of individual tools
▪ Connect components to your own user interface

Numerous more components available open source at
app.tigzig.com - web scraper, pre-formatted slide deck

creator, Excel table to PDF, Excel and Google Sheets
updater, file converters, finance data extractors…

app.tigzig.com

Architecture Overview Doc
This is my personal app architecture file for DATS-4 that I

feed to AI Coder at start of every session. Enables
immediate productivity without full codebase exploration.

Includes critical gotchas from earlier experiences.

README
All GitHub repos with README with step-by-step guide

TIGZIG: Micro-Apps for Analytics
25+ apps: Database AI / xlwings Lite / Automation / Quants

Amar Harolikar
Specialist - Decision Sciences & Applied AI

Builder of app.tigzig.com

app.tigzig.com

Access the full suite of open-source tools at

app.tigzig.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

